Personality and Places

Our paper examining the link between individual personality and the places people visit has just been published in Computers in Human Behavior. It’s open access, so you can go read it for free, now

In an experiment we ran previously, we asked users of Foursquare to take a personality test and give us access to their checkin history. The personality test gives us a measure of how each person scores for five different factors: Openness, Conscientiousness, Extraversion, Agreeableness and Neuroticism. The checkin history lists all the places they’ve ever checked in to using Foursquare. Because a couple of hundred people took part in the experiment, we ended up with a large number of individual personalities that we could link to over a hundred thousand venues. In total, this represents a pretty staggering half a million Foursquare checkins that we have personality data associated with.

Our first step with this data has been to see if there are any links between personality factors and the places people choose to visit, and we found some interesting connections.

One of our main finding shows that the use of Foursquare for recording checkins seems to correlate well with Conscientiousness. The more conscientious a user is, the more likely they are to have checked in at more places and to have visited more venues. This could be because people with a high Conscientiousness score tend to be quite organised and disciplined, and so are more likely to remember to check in at every place they visit.

The opposite is true for Neuroticism: the more neurotic an individual is, the fewer places they have visited. Neuroticism is associated with negative feelings, and a tendency to be less social, which could then translate into people going to fewer places, and so checking in less. This is expressed again when we look at only those venues classed as ‘social’ (i.e. – somewhere you would go to hang out with friends). The more neurotic someone is, the fewer ‘social’ venues they have been to.

Surprisingly, we have found no link between Extraversion and the number of social venues visited. It may be expected that extraverts (who are very social in their nature) may go to more social venues. However, the data does not support this. In fact, we find no link between Extraversion and any aspect of Foursquare checkins that we have examined so far.

The personality factor of Openness is related to feelings of creativity and artistic expression, and a willingness to experience new things. It is interesting to find that there is a link between Openness and the average distance travelled between checkins – the more Open an individual is, the further they tend to have travelled. This could be an expression of an Open individual’s desire to experience new things exposing itself through wider travel, and a larger geographic spread of checkins. However, we do not find any link between Openness and the number of different categories visited by a user. We do not see a desire for new experiences express itself in the range and diversity of places visited.

Ultimately, this data could be incredibly useful in improving venue recommendation systems. Current systems use many different information ‘cues’ to recommend to a user a place they might like to visit. These cues include things such as where they have been in the past, where their friends have been, or where is popular nearby. Perhaps by including aspects of an individual’s personality (so including aspects of why they might visit somewhere) we can increase the usefulness of these recommendations.

There is still a lot of analysis to be done on this data, and both myself and Nyala Noe are busy churning through it to discover other links between personality and the places people visit. As we find more interesting connections, I’ll post more here.

 

How do people decide whether or not to read a tweet?

It turns out that an existing relationship with the author of the tweet is one of the main factors influencing how someone decides whether or not to read a tweet. At the same time,  a large number associated with a tweet can also make the tweet more attractive to readers.

Our latest Open Access research has discovered how much effect the information about a tweet has on whether people decide to read it or not.

By showing hundreds of Twitter users the information about two tweets but not the tweets themselves, and then asking the users which tweet they would like to read, we have been able to look at which information is more important when users are deciding to read a tweet.

We looked at two different types of information:

  1. Simple numbers that describe the tweet, such as the number of retweets it has, or numbers that describe the author, such as how many followers they have, or how many tweets they’ve written.
  2. Whether a relationship between the reader and the author is important, and whether that relationship was best shown through subtle hints, or direct information.

When readers can see only one piece of information, the case is clear: they’d rather read the tweet written by someone they are following. Readers can easily recognise the usernames, names, and profile images of people they already follow, and are likely to choose to read content written by someone they follow (instead of content written by a stranger) around 75% of the time. If all they can see is a piece of numerical information, they would rather read the tweet with the highest number, no matter what that number is. The effect is strongest with the number of retweets, followed by the number of followers, but even for the number of following and number of tweets written the effect is significant.

When readers can see two pieces of information, one about their relationship with the author, and one numerical, there are two cases to look at. When the author they follow also has a high numerical value, readers will choose that tweet in around 80% of the cases. When the author they already follow has a lower numerical value, it is still the existing relationship that is more of a draw. Readers would rather read a tweet from someone they know that has a low number of retweets, than one from a stranger with a high number of retweets.

This work offers an understanding of how the decision-making process works on Twitter when users are skimming their timelines for something to read, and has particular implications for the display and promotion of non-timeline content within content streams. For instance, readers may pay more attention to adverts and promoted content if the link between themselves and the author is highlighted.

Previous results  from an early experiment were published at SocialCom. The results in this new paper are from a modified and expanded version of this earlier experiment.